t^2=99

Simple and best practice solution for t^2=99 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2=99 equation:



t^2=99
We move all terms to the left:
t^2-(99)=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $

See similar equations:

| 5x-1.5=13.5,x= | | (12x+4)=(14-2)+100=180 | | x=56+50° | | 0.25(2x+16)-x=0.5 | | 3(10-6x)=12 | | x+56=50° | | -8u+46=-2u+8 | | 100+(12x+4)+(14-2)=180 | | -8y+4y+12=-4 | | 2b^2-18b+1=0 | | 70x+60=40 | | -1=-7w+4(w-7) | | -1=-7w+4(w+7) | | 1.4/2.2=g/25 | | -6x-7=-6x-10 | | 1/2h-(h)=-8h | | (2y+6)/2=-5 | | -b+(-4)=4b+1 | | 41.47/13=x/18.5 | | k/3-19=-28 | | y=1+7/31 | | 255x=755 | | a/24-5=24 | | –2–x=3 | | 4k-11=53 | | x-7.5=15 | | 31=31y-7 | | (6-5c)/13=-13 | | x3+4=42 | | (13k-4)/4=-40 | | Ix-12|-3=11 | | x-120=40 |

Equations solver categories